
Monatshefte f€uur Chemie 136, 987–1011 (2005)

DOI 10.1007/s00706-005-0305-z

Invited Review

Magnetic Orbitals and Mechanisms
of Exchange I. Direct Exchange

Jacques Curély�
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Summary. The problem of direct exchange is examined in the simplest cases (formal coupling of two

electrons initially isolated and hydrogen molecule). Then we consider the general case of a solid

characterized by weak overlaps between the atomic orbitals of first-nearest neighbours so that

the involved electrons are quasi-localized. We recall the physical origin of spin-orbit coupling. Its

influence on direct exchange allows one to revisit Hund’s rules and to express phenomenological

Hamiltonians describing anisotropic couplings as well as the antisymmetrical Dzialoshinski-Moriya

coupling.
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Introduction

The idea of exchange coupling within atoms and between atoms has been one of
progress marred by many errors and obscurities. It seems instructive to briefly
recall here the main facts which have allowed the emergence of this important
concept. In 1895 Curie reported in his thesis entitled ‘‘Magnetic properties of
compounds at various temperatures’’ that these properties could be shared into
three distinct groups: diamagnetics, paramagnetics (the term wrongly employed
being ‘‘weakly magnetics’’), and ferromagnetics [1]. But he also wondered if these
magnetic behaviours did not belong to a single class. In 1905 Langevin proposed a
theory of diamagnetism and paramagnetism which gave a good description of
Curie’s results [2]. The most important point was the link between a microscopic
variable (i.e., the magnetic moment per atom in presence of an external magnetic
field) and a macroscopic one (i.e., the magnetization derived from experiment). In
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order to understand the existence of ferromagnetism below a characteristic tem-
perature (the Curie temperature) Langevin suggested at the end of his article that a
possible mechanism could be a co-operative phenomenon between permanent
microscopic magnetic moments. In 1906 Weiss exploited this fruitful idea and
introduced the notion of ‘‘molecular field’’, acting on the atomic magnets and
proportional to the net magnetization [3]. In spite of the fact that a possible elec-
trostatic origin of this field was suggested [4], this very origin remained a puzzle
for two decades, notably due to the fact that the field magnitude was acknowledged
as improbable. In addition attempts to quantify the Weiss theory failed [4, 5].

Meanwhile, the experimental determination of gyromagnetic ratios of ferro-
magnetics in 1915 by Barnett [6] showed that the involved magnetic moments
must originate in something quite different from orbital motion of electrons. The
first convincing explanation has been given by Landé in 1922 [7]: these gyromag-
netic ratios have the same origin as anomalous Zeeman splittings in atoms. With
the introduction of the concept of electron spin in 1925, the fundamental origin of
magnetism was identified. But, of course, this is the development of Quantum
Mechanics which has given an important impetus to the microscopic understanding
of magnetism. More particularly, the recognition by Heisenberg [8] and Dirac [9]
that Pauli’s exclusion principle (1925) implies that the wave function of a many-
electron system must be antisymmetrical under coordinate-spin permutations, has
played an important role. Then, the application of Hund’s rules for the coupling of
spins in atoms [10] has immediately followed [11].

Thus, with the birth of the ‘‘Heisenberg-Dirac’’ Hamiltonian expressed in the
si � sj form, the notion of ‘‘exchange energy’’ resulting from a spin–spin interaction
has naturally appeared as well as the first microscopic theory of ferromagnetism.
Clearly the lowest state of a ferromagnetic interaction is characterized by a parallel
alignment of spins. Discussing the sign of exchange energy Néel [12] has first
introduced the concept of antiferromagnetism, i.e., a state in which two sublattices
of spins in a crystal may align themselves antiparallel. Two years later the idea of
superexchange first appeared when Kramers [13] tried to understand the early
adiabatic demagnetization results which indicated that small exchange couplings
existed even between ions separated by one or several diamagnetic groups. Finally,
to these central themes of the microscopic theory of magnetism in insulators and
semiconductors, one may add the basic ideas of the crystal field theory introduced
by Van Vleck [14].

In the present article we are going to examine the problem of direct exchange in
the simplest cases, i.e., formal coupling of two electrons initially isolated and
hydrogen molecule. This will allow one to give a general framework which will
be illustrated by the determination of the effective exchange Hamiltonian in a solid
characterized by weak overlaps between the atomic orbitals involving first-nearest
neighbours. Under these conditions, we always deal with localized electrons. Then,
we examine the physical origin of spin-orbit coupling. Its influence on direct
exchange allows one to revisit Hund’s rules and to express the phenomenological
Hamiltonians describing anisotropic couplings as well as the antisymmetrical
Dzialoshinski-Moriya coupling.

Consequently, the problem of double exchange will not be evoked in this
article. Indeed this type of coupling to which Zener first focused [15] notably
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occurs in mixed-valency oxides. In such compounds, one deals with the coupling
of atoms which are identical except for the number of electrons. Then, interchange
of the states of ionisation of the two atoms gives a new state degenerate with the
initial one. Since these states can resonate, electrons can hop more easily between
atoms and a ferromagnetic alignment of the two atomic spins Si and Sj is favoured.
This coupling is then characterized by a coupling energy linear in jSi þ Sjj rather
than in Si �Sj. Thus, due to the involved mechanism which is completely different
from the exchange one, the problem of double exchange naturally appears as out of
the scope of the present article (for a complete review see the papers written by
Anderson and Hasegawa [16] and de Gennes [17]).

In the following article II we shall examine the important case of superex-
change. More particularly, since the phenomenological aspects of exchange cou-
pling have been reviewed in article I and have shown their limits of applicability
(the corresponding Hamiltonians having no predictive microscopic character),
the involved microscopic mechanisms will be detailed in terms of key molecular
integrals.

Direct Exchange

1. The Hamiltonian Symmetries and Pauli’s Exclusion Principle

Let us consider a system containing N electrons, each one being labelled by the
current index i (i ¼ 1; . . . ;N). Each electron is characterized by its position ri (with
respect to the atom to which it belongs) and its spin si. If we set ui¼ (ri, si), the
corresponding Hamiltonian may be written as Eq. (1) where Ti is the kinetic energy
of each particle i, Vi the corresponding potential energy, and Ui,j the interaction
potential between two different electrons i and j (Eq. (2)).

Hðu1;u2; . . . ; ui; . . . ;uj; . . . ; uNÞ ¼
XN
i¼1

ðTi þ ViÞ þ
X
i 6¼j

Ui; j ð1Þ

Ti ¼ � �h2

2m
=2

i ; Vi ¼ VðriÞ; Ui;j ¼ Uðri; rjÞ ð2Þ

H is even with respect to the interchange of any two particle indices (double
symmetry group for each pair). As a result of group theory we immediately derive
that the corresponding eigenstates are either even or odd (Eq. (3)) so that many
types of solutions combining all the pair behaviours (symmetry or antisymmetry)
are possible.

Cðu1;u2; . . . ; ui; . . . ;uj; . . . ; uNÞ ¼ �Cðu1; u2; . . . ;uj; . . . ; ui; . . . ;uNÞ ð3Þ
However Pauli’s exclusion principle states that the eigenstates which are

relevant when dealing with electrons (i.e., fermions characterized by half-integer
spins) must be strictly odd with respect to the interchange of any two particle indices
(Eq. (4)) thus bringing a considerable restriction to the available solution domain.

Cðu1;u2; . . . ; ui; . . . ;uj; . . . ; uNÞ ¼ �Cðu1; u2; . . . ;uj; . . . ; ui; . . . ;uNÞ ð4Þ
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2. Formal Coupling of Two Electrons Initially Isolated

Let us consider the formal case of two electrons labelled 1 and 2, respectively,
initially isolated and which may couple their spin. We suppose that there is no spin-
orbit coupling. As a consequence, the orbital and spin parts of the collective wave
function describing the system of coupled electrons are disconnected (Eq. (5)).

Cðu1; u2Þ ¼ Fðr1; r2Þwðs1; s2Þ ð5Þ
The Hamiltonian given by Eq. (1) (in which now V1¼V2¼ 0) only determines the
orbital contribution (Eq. (6)).

HFðr1; r2Þ ¼ EFðr1; r2Þ ð6Þ
Pauli’s exclusion principle imposes that either Fðr1; r2Þ or wðs1; s2Þ must be odd
(the other one remaining even) with respect to the interchange of indices 1 and 2.
If the Coulomb repulsion Uðr1; r2Þ ¼ e2=4�"0jr1 � r2j between both electrons is
small, this contribution to the Hamiltonian H may be considered as a perturbation.
Let FaðrÞ (respectively, FbðrÞ) be the eigenstate of the Hamiltonian H1 ¼ T1 ¼
p2

1=2m (respectively, H2 ¼ T2 ¼ p2
2=2m) characterized by the eigenvalue Ea

(respectively, Eb). In this framework, this approximation leads to solve the well-
known secular equation det(H-E1)¼ 0 (where 1 is the identity matrix and
H ¼ T1 þ T2 þ Uðr1; r2Þ). In the subspace spanned by the spatially symmetrical
and antisymmetrical wave functions FSðr1; r2Þ and FAðr1; r2Þ containing functions
Fa(r1) and Fb(r2), we have Eq. (7).

FSðr1; r2Þ ¼
1ffiffiffi
2

p ðFaðr1ÞFbðr2Þ þ Faðr2ÞFbðr1ÞÞ

FAðr1; r2Þ ¼
1ffiffiffi
2

p ðFaðr1ÞFbðr2Þ � Faðr2ÞFbðr1ÞÞ ð7Þ

Note that these functions are orthogonal by construction, i.e.,
hFSðr1; r2ÞjFAðr1; r2Þi ¼ 0, and are the eigenstates of the permutation operator P
of both particles (Eq. (8)).

PFSðr1; r2Þ ¼ þFSðr1; r2Þ; PFAðr1; r2Þ ¼ �FAðr1; r2Þ ð8Þ
Let us consider the spin part. As the spin states js1i and js2i are disconnected,
the collective spin states wðs1; s2Þ ¼ js1; s2i may be written as direct products
js1i � js2i. If one arbitrarily defines a z-direction in each spin space, i.e., an axis
of quantization, we have Eq. (9).

wðs1; s2Þ ¼ js1; s2i ¼ js1i � js2i ¼ jsz1i � jsz2i ¼ jsz1; sz2i ¼

j""i
j"#i
j#"i
j##i

8>><
>>: ð9Þ

Even and odd linear combinations of these spin states may be built up. As there is
no spin-orbit coupling, the full rotation group operates in each spin space with the
representation D1=2 for a spin 1=2 associated with each electron. We have Eq. (10)
where � is the direct sum symbol.

D1=2 � D1=2 ¼ D0 � D1 ð10Þ
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It means that, if we introduce the total spin operators (Eq. (11)) we may define
a new basis jS; Szi in a 4� 4 dimensional space from the starting basis js1; s2i with
S¼ 0 (Sz¼ 0, singlet state) and S¼ 1 (Sz¼ 0;�1, triplet state) (Eq. (12)).

S ¼ s1þ s2; Su¼ su1þ su2; u ¼ x; y; or z ð11Þ

j0; 0i ¼ 1ffiffiffi
2

p ðj"#i � j#"iÞ; S ¼ 0 ðsinglet stateÞ

j1; 1i ¼ j""i;
j1; 0i ¼ 1ffiffi

2
p ðj"#i þ j"#iÞ;

j1;�1i ¼ j##i

9=
; S ¼ 1 ðtriplet stateÞ ð12Þ

Thus, the triplet states j1; Szi are even with respect to the interchange of indices 1
and 2, while the singlet state j0; 0i is odd. Consequently, because of Pauli’s exclu-
sion principle, we have the following symmetries (Eq. (13)).

S ¼ 1 wðs1; s2Þ ¼ js1; s2i even; Fðr1; r2Þ ¼ FAðr1; r2Þ odd

S ¼ 0 wðs1; s2Þ ¼ js1; s2i odd; Fðr1; r2Þ ¼ FSðr1; r2Þ even ð13Þ

From a physical point of view, a singlet state (S¼ 0) will be a non-magnetic state
(i.e., a purely diamagnetic state) whereas the triplet state (S¼ 1) will be a magnetic
one. Now we wish to express the Hamiltonian H given by Eq. (1) vs. spin operators,
exclusively. As H commutes with the permutation operator P, its representation in
the subspace spanned by the basis functions FSðr1; r2Þ and FAðr1; r2Þ is diagonal
(Eq. (14)) where Ea and Eb are the eigenvalues associated with the eigenstates
Fa(r1) and Fb(r2) appearing in FSðr1; r2Þ and FAðr1; r2Þ given by Eq. (7); similarly
u and j are defined by Eq. (15).

H ¼ Eaþ Ebþ uþ j 0

0 Eaþ Ebþ u� j

� �
ð14Þ

u ¼
ð
dr1dr2jFaðr1Þj2Uðr1; r2ÞjFbðr2Þj2

j ¼
ð
dr1dr2F�

aðr1ÞF�
bðr2ÞUðr1; r2ÞFbðr1ÞFaðr2Þ ð15Þ

u is the Hartree term (or direct term) whereas j is the Fock term (or exchange term). j
is nothing but the electrostatic energy of the charge distribution �eF�

aðrÞFbðrÞ and
is positive definite. As a consequence, if we examine Eq. (7) where the spatially
symmetrical and antisymmetrical wave functions are defined, we derive that func-
tion FA(r1, r2) corresponds to the state of lowest energy. Owing to Pauli’s exclusion
principle we must associate the triplet spin state (S¼ 1, cf. Eq. (12)) characterized
by a symmetrical spin function. Under these conditions, the singlet state (S¼ 0 and
antisymmetrical spin wave function, cf. Eq. (12)) is associated with a spatially
symmetrical wave function FS(r1, r2) and characterizes the state of highest energy.
At this step the physical interpretation is easy: the Coulomb repulsion between both
electrons favours the state with a parallel spin alignment (see comments below
about Hund’s rule). The energy J (Eq. (16)) is called ‘‘exchange energy’’; ES,0
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and ET,0 are the energies associated with the low-lying singlet and triplet states,
respectively.

J ¼ ES;0 � ET;0 ¼ 2j ð16Þ
As noted by Herring [18], it is possible to give a physical picture for describing

this quantity. If we consider both electrons at the time origin t¼ 0 and in the initial
state Faðr1ÞFbðr2Þ, the potential U(r1, r2) achieves a connection with the permuted
state Faðr2ÞFbðr1Þ by the bias of the matrix element j. Over a small time range Dt,
the probability amplitude of the permuted state increases as jDt (j> 0). In other
words j measures the initial ratio with which two tagged electrons, placed one in
each state, may be exchanged between these states.

It is straightforwardly shown that the spectrum and the eigenvalues of the effec-
tive spin Hamiltonian (in �h unit) (Eq. (17)) coincide with those of H defined by Eq.
(1), restricted to the two electrons 1 and 2, with V1¼V2¼ 0, the spin operator of
which being given by the set of Pauli’s matrices r1 and r2 (with si ¼ �hri=2; i ¼ 1; 2).

Heff ¼ E01� Js1 � s2; E0 ¼ Ea þ Eb þ u� j

2
ð17Þ

1 is the 4�4 identity matrix. Then, if we express the projector operators PT and
PS on the triplet and singlet states, respectively, we have for spins 1=2 (in �h unit)
Eq. (18) so that Heff (Eq. (19)) corresponds to the electronic Hamiltonian finally
concerning the two types of involved states, i.e., the singlet and triplet states.

PT¼
3

4
1þ s1 � s2; PS¼

1

4
1� s1 � s2 ð18Þ

Heff ¼ E01� j

2
ðPT � 3PSÞ ð19Þ

3. The Particular Case of Hydrogen Molecule

In 1927 Heitler and London [19–21] have given the first treatment of the coupling of
atoms to form molecules by considering the hydrogen molecule. Heitler and London
have assumed spatial wave functions of the same form, as those given by Eq. (7). But,
due to the mass difference between electrons and nuclei, the degrees of freedom may
be uncoupled, thus allowing to fix the nuclei positions, say Ra and Rb. As a conse-
quence, the Hamiltonian describing the motion of the two electrons in the field of the
two nuclei may be decomposed into two hydrogenoid contributions and a potential
interaction describing the Coulomb repulsion between electrons (respectively,
between protons) and the attraction with the other proton. This is the well-known
Born-Oppenheimer approximation [22]. Under these conditions the Hamiltonian
may be written as Eq. (20) with H1a, H2b, and Uint being given by Eq. (21) where
the various distances r1a, r1b, r2a, r2b, r12, and Rab are defined in Fig. 1.

H ¼ H1aðr1Þ þ H2bðr2Þ þ Uintðr1; r2Þ ð20Þ

H1aðr1Þ ¼
p2

1

2m
� e2

4�"0r1a

; H2bðr2Þ ¼
p2

2

2m
� e2

4�"0r2b

Uintðr1; r2Þ ¼
e2

4�"0

1

Rab

þ 1

r12

� 1

r2a

� 1

r1b

� �
ð21Þ
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Let Faðr1Þ ¼ Fðr1aÞ and Fbðr2Þ ¼ Fðr2bÞ be the eigenstates of Hamiltonians
H1a(r1) and H2b(r2), respectively; the corresponding ground state is characterized
by the energy E�

0. Oppositely to the case of the formal coupling of two electrons
where the orbitals are orthogonal by definition, orbitals Faðr1Þ ¼ Fðr1aÞ and
Fbðr2Þ ¼ Fðr2bÞ are not orthogonal and allow one to construct the spatially sym-
metrical and antisymmetrical wave functions of the two electrons (Eq. (22)).

FSðr1; r2Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1 þ S2Þ
q ðFaðr1ÞFbðr2Þ þ Faðr2ÞFbðr1ÞÞ

FAðr1; r2Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1 � S2Þ
q ðFaðr1ÞFbðr2Þ � Faðr2ÞFbðr1ÞÞ ð22Þ

These functions are eigenfunctions of the permutation operator (see Eq. (8)) and
are orthogonal. They have been normalized by introducing the overlap integral S
(Eq. (23)).

S ¼
ð
drF�

aðrÞFbðrÞ ð23Þ

The terms of Hartree (direct term) and Fock (exchange term) are respectively
defined as follows (Eq. (24)).

u ¼
ð
dr1dr2jFaðr1Þj2Uintðr1; r2ÞjFbðr2Þj2 ¼

ð
dr1dr2jFaðr2Þj2Uintðr1; r2ÞjFbðr1Þj2

j ¼
ð
dr1dr2F�

aðr1ÞF�
bðr2ÞUintðr1; r2ÞFbðr1ÞFaðr2Þ ð24Þ

In addition the spatial wave functions FS(r1, r2) and FA(r1, r2) must be multiplied
by the spin wave function of the adequate symmetry, as imposed by Pauli’s exclu-
sion principle (see Eq. (13)). In the subspace spanned by the functions FS(r1, r2)
and FA(r1, r2) given by Eq. (22) the secular equation (Eq. (25)) reads as shown by
Eq. (26).

hFijHjFji ¼ EhFijFji i or j ¼ A or S ð25Þ

2E�
0 þ

uþj

1þS2 0

0 2E�
0 þ

u�j

1�S2

 !
¼ ES;0 0

0 ET;0

� �
ð26Þ

Fig. 1. Description of the distances between protons and electrons in the molecule H2; the dashed

lines correspond to repulsive interactions

Magnetic Orbitals and Mechanisms of Exchange I 993



Achieving the same reasoning as for the formal coupling of two electrons, we
derive Eq. (27) and the associate effective Hamiltonian expressed in terms of spin
operators is given by Eq. (28).

J ¼ ES;0� ET;0 ¼ �2
uS2� j

1 � S4
ð27Þ

Heff ¼ E01� Js1 � s2; E0¼ 2E�
0 þ

u� jS2

1 � S4
� J

4
ð28Þ

Ignoring the first two terms in E0, the eigenvalues of Heff are �J=4 (triplet state)
and 3J=4 (singlet state) in �h unit, thus reproducing the electronic spectrum. When
the separation between hydrogen atoms is large enough, the overlap S is small and
we have Eq. (29).

J � 2ð j� uS2Þ ð29Þ

As for a single atom, j is an electrostatic energy and is positive definite, as u. Thus,
J appears as the difference of two positive quantities and may be (i) positive,
ES,0>ET,0 and the ground state is characterized by a ferromagnetic spin arrange-
ment and a spatially antisymmetrical wave function FA(r1, r2); (ii) negative,
ES,0<ET,0 and the ground state is characterized by an antiferromagnetic spin
arrangement and a spatially symmetrical wave function FS(r1, r2).

A calculation shows that, for realistic values of the separation distance Rab

between the two protons, case (ii) prevails (antiferromagnetic arrangement). How-
ever, for large values Rab, case (i) now prevails (ferromagnetic arrangement).
Sugiura [23] has given an exact evaluation of the difference ES,0�ET,0 for the
case where Fa(r1) and Fb(r2) are hydrogenic 1s eigenfunctions (Eq. (30))
where �¼ 0.577 is Euler’s constant and aH is the radius of hydrogen atom (Bohr
radius).

J ¼ ES;0� ET;0 � � 56

45
þ 4

15
� þ 4

15
ln

R

aH

� �� �
R

aH

� �3

exp �2
R

aH

� �
ð30Þ

Thus, for reasonable values of R, J< 0 (antiferromagnetic arrangement) but J> 0
(ferromagnetic arrangement) at very large R values because of the logarithm.
Unfortunately the latter result contradicts a theorem established by Courant
[24, Chapter VI, Section 6; 18] which states that the ground state eigenfunction
of a semi-bounded Sturm-Liouville differential operator, acting in a space of any
dimension, must be free from nodes. In other words, in the H2 problem, this means
that, for any R, the ground state must be a singlet (the triplet being characterized
by a spatially antisymmetrical wave function). This problem simply comes from
the fact that, in the Heitler-London approximation, the electron-electron correla-
tions are neglected while using atomic orbitals. The presence of a second atom
induces a polarization in the atomic orbitals and increases the probability of finding
the electrons between the two protons. In addition, when the two electrons
exchange themselves, this event does not occur on the axis joining the two protons
because both electrons try to avoid themselves for minimizing their Coulomb
repulsion.
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4. Effective Exchange Hamiltonian for a Solid

We now examine the possible generalization of previous results to a solid when the
various overlaps between atomic orbitals are weak [18, 25]. In this respect we must
begin by a thorough description of the electronic structure. For an atom i with ni
electrons there are 2ni possible spin functions and for each of these there are Mi

linearly independent coordinate functions of the same energy (which may be trans-
formed by permutations). Thus the partition of n ¼

P
i ni electrons into sets of

n1; n2; . . . ; nN on the various atoms leads to
Q

i 2niMi independent states. As a
consequence the dimensionality of the possible states is n!=

Q
i ð2niMi=ni!Þ. Within

the space just described, we may define a state Ck of the separated-atom system by
the following conditions: (i) electrons 1; . . . ; n1 are to be on atom 1, electrons ðn1þ
1Þ; . . . ; ðn1þ n2Þ on atom 2, and so forth; (ii) electrons on each atom obey Pauli’s
exclusion principle (i.e., there are in a state antisymmetrical under coordination-
spin permutations); (iii) each atom i is characterized by a particular spin state ki,
chosen among the 2Siþ 1 possible states (the sum Si being the total spin of the ni
electrons).

Now let us define Ck as the state of the interacting-atom system that corre-
sponds to Ck (Eq. (31)).

Ck! Ck ð31Þ
This correspondence is characterized by the following properties: (i) for any spatial
symmetry operator R, or for the time-reversal operator K, Eq. (31) holds together
with Eq. (32); (ii) the scalar product is preserved (Eq. (33)); (iii) the effective
Hamiltonian Heff relative to the state Ck is the same as that of the Hamiltonian
H relative to the state Ck so that Eq. (34) is obtained.

RCk ! RCk; KCk ! KCk ð32Þ

hCkjCk0 i ¼ hCkjCk0 i ð33Þ

hCkjHjCk0 i ¼ hCkjHeff jCk0 i ð34Þ

Finally we must make an assumption of localization; the functions Ck of the
separated-atom system decrease exponentially when any electron m is removed
to a large distance from the centre Ri(m) of its own atom i(m) (Eq. (35)) where C
is an algebraic factor and �i(m) is the decay constant of the atomic wave function.
Due to the fact that overlaps between atomic orbitals are weak, the Heitler-London
approximation consists in taking for Ck simply a product of free-atom wave func-
tions (Eq. (36)) where Fki is the eigenfunction of atom i in spin state ki. Under
these conditions the Cks obey the localization condition given by Eq. (35). In
addition, as there is no spin-orbit coupling and for satisfying Pauli’s exclusion
principle, each wave function C must be antisymmetrical under the permutation
of coordinates and=or spins and may be symbolically written as shown by
Eq. (37).

Ck � C exp �
X
m

�iðmÞ rm� RiðmÞ
�� �� !

ð35Þ
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Ck � Fk1
ðr1; . . . ; rn1

; s1; . . . ; sn1
ÞFk2

ðrn1þ1; . . . ; rn1þn2
; sn1þ1; . . . ; sn1þn2

Þ
� � � � � FkN ð. . . ; rn; . . . ; snÞ ð36Þ

Ckðr1; . . . ; rN ; s1; . . . ; sNÞ ¼ AFkðr1; . . . ; rNÞwkðs1; . . . ; sNÞ ð37Þ
A thus appears as a global antisymmetrizer operator (Eq. (38)) with P

ðrÞ
ij and P

ðsÞ
ij

being given by Eq. (39).

A ¼ 1

n!

X
P

�PP
ðrÞ
ij P

ðsÞ
ij ð38Þ

P
ðrÞ
ij h. . . ; ri; . . . ; rj; . . . jFki ¼ h. . . ; rj; . . . ; ri; . . . jFki

P
ðsÞ
ij h. . . ; si; . . . ; sj; . . . jwki ¼ h. . . ; sj; . . . ; si; . . . jwki ð39Þ

For spins 1=2, P
ðsÞ
ij may be expressed owing to Pauli matrices or s matrices by Eq.

(40).

P
ðsÞ
ij ¼

�
1

2
1þ 2si � sj

�
ð40Þ

In Eq. (38) �P ¼ þ1 is for even permutations, �1 for odd. Since the projections
AFk of the home-base functions characterized by the various spin states k form a
complete set in the subspace of physical interest, the eigenvalues E of the Hamil-
tonian H for the system of interacting atoms are solutions of the secular equation
(Eq. (41)).

det½hFkjHAjFk0 i � EhFkjAjFk0 i	 ¼ 0 ð41Þ
As permutations commute with the Hamiltonian H given by Eq. (1) and show a
group structure, it is easily verified that Eq. (42) may be decomposed as Eq. (43)
where VP is given by Eq. (44).

hCkjHjCk0 i ¼
1

ðn!Þ2
hFkj � h�kj

X
P0
�P0P

0ðrÞ
ij P

0ðsÞ
ij H

X
P

�PP
ðrÞ
ij P

ðsÞ
ij jFk0 i � jwk0 i ð42Þ

hCkjHjCk0 i ¼
1

n!
hwkj

X
P

�PVPP
ðsÞ
ij jwk0 i ð43Þ

VP ¼ hFkjHjPðrÞ
ij Fk0 i ð44Þ

Thus the secular equation given by Eq. (41) and which determines the solid
energy spectrum is equivalent to the secular equation in spin space (Eq. (45))
where SP ¼ hFjPðrÞ

ij Fi is the overlap integral.

det
X
P

�P VP � "SPð ÞPðsÞ
ij

" #
¼ 0 ð45Þ

Let us examine the secular equation given by Eq. (41). The permutations
P ¼ P

ðrÞ
ij P

ðsÞ
ij which do not move any electron to a new atom form a subgroup G0

of the group G of all permutations, such as dimG0 ¼
Q

i ni!. The corresponding
contribution to Eq. (41) is diagonal, as expected. The largest non-trivial terms in
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Eq. (41) are those for which Ps interchange a single pair of electrons between
neighbouring atoms. The Ps which interchange electrons between far and far atoms
give smaller contributions. This is due to the fact that a large number of the
coordinate integrations in the scalar product hFkjHjFk0 i involves overlap integrals
of the form given by Eq. (35). Under these conditions, expressing P

ðsÞ
ij owing to Eq.

(40) allows one to write the kk0 matrix element as shown by Eq. (46) where ni and
nj represent the number of electrons involved in permutations between sites i and j
and where EF is the mean energy hFkjHjFki (the same for all k).

ðEF � EÞ�kk0 �
X
i> j

ninjhFkjðH � EÞjPðrÞ
ij

1

2
1þ 2si � sj

� �
jFk0 i þ � � � ð46Þ

The remainder term represented by ellipses refers to the contribution from
higher-order permutations characterized by an exponential decay law (cf. Eq. (35)).

If we consider the dependence of Fk on the coordinates and spins of the n1

electrons of atom 1, exclusive permutations of the n1 coordinates will transform Fk

like a function belonging to an irreducible representation D1 of the permutation
group of n1 objects, characterized by the dimension M1. According to Wigner [26],
Fk, which is antisymmetrical under simultaneous permutations of the n1 coordi-
nates and the corresponding spins, may be written as shown by Eq. (47) where the
functions ’� form an orthonormal basis for the irreducible representation D1.

Fk ¼
1ffiffiffiffiffiffi
M1

p
XM1

�¼1

’�ðr1; . . . ; rn1
Þ��ðs1; . . . ; sn1

Þ ð47Þ

The spin functions �� form a corresponding basis for the associated representa-
tion ~DD1 ¼ �pD1. At this step, one must remark that, if Fk is to transform under
rotations of the first n1 spins, like the k1th basis state of the irreducible representa-
tion of the rotation group characterized by spin S1, then each function ��¼��1

must show this property. As a consequence, it is appropriate to write ��1
as �k1�1

for
recalling that its form is determined by its rotational symmetry (quantum number
k1) and its permutational symmetry (quantum number �1).

Repeating this reasoning to the other N� 1 atoms of the solid allows one to
write finally Eq. (48) where n is the total number of involved electrons.

Fk ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiQN

i¼1

Mi

s XM1

�1¼1

� � �
XMN

�N¼1

’�1����N ðr1; . . . ; rnÞ�k1�1
� � ��kN�N ð48Þ

The last task is to express the term of Eq. (46) containing the product si � sj in
terms of spins Si �Sj of the complete atoms. Owing to Wigner-Eckart theorem we
may write Eq. (49) with conditions being given by Eq. (50) and where Si is the sum
of the spins of all the ni electrons belonging to atom i.

hki�ijsijki0�i0i ¼ fið�i; �i0Þhki�ijSijki0�i0i ð49Þ

fið�i; �i0Þ ¼ f�i ð�0i; �iÞ;
XMi

�i¼1

fið�i; �iÞ ¼
Mi

ni
ð50Þ
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This is owing to this argument that Van Vleck established the present model
[27]. Under these conditions, when the wave functions are non-degenerate, the
spin-dependent part of the matrix element given by Eq. (46) may be rewritten as
Eq. (51) so that the effective Hamiltonian is described by Eq. (52) in the spin
space; as previously noted EF is the mean energy hFkjHjFki (the same for all
k), DEF is the k-dependent term which arises from the factor 1

2
1 in Eq. (46) and

Jij is given by Eq. (53).

�2
X
i> j

h�kjSi � Sjj�k0 i
ð
dr1 � � � drNFkðH � EÞPðrÞ

ij Fk0 ð51Þ

Heff ¼ ðEF þ DEFÞ1� 2
X
i> j

JijSi � Sj ð52Þ

Jij ¼
ninj

MiMj

XMi

�i¼1

XMi

�i
0¼1

XMj

�j¼1

XMj

�j
0¼1

fið�i; �i
0Þfjð�j; �j0Þ

�
ð
dr1 � � � drNh’�����i����j���jðH � EFÞjPðrÞ

ij ’����i 0����j 0���iother � ð53Þ

Thus, Jij is determined by the coordinate functions ’�1����N and the symmetries of
the problem. The angular brackets mean that the �ks of atoms other than i and j are
to be taken the same in ’� and in ’.

5. Concluding Remarks

We have previously seen that the spin–spin exchange coupling has a strictly orbital
origin [28]. Furthermore the exchange coupling has appeared as a consequence of
the interplay between Pauli’s exclusion principle and various energy terms. Thus,
any term T1; . . . ;V1; . . . ; and=or U12, . . . may contribute to the exchange coupling
through the energy difference ES,0�ET,0, where ES,0 and ET,0 are the respective
energies of the singlet and triplet states (see Fig. 2 where the excited states are also
reported, the ground state being the triplet). If D¼ES,1�ES,0 is the difference

Fig. 2. Description of a commonly encountered molecular energy level spectrum; the singlet and

triplet spectra have been artificially separated

998 J. Curély



between the energies of the ground state and the first excited state in the singlet
spectrum, the use of the spin–spin Hamiltonian �Jsi � sj, with here J¼ES,0�ET,0,
is submitted to the two conditions: (i) J<<D and (ii) kT <<D where T is the
absolute temperature and k the Boltzmann’s constant.

In the particular case of the hydrogen molecule, we have seen that the ground
state (which is diamagnetic) correspond to the case ES,0<ET,0 and the discussion
led by Sugiura [23] sets the problem of the sign of J. At this step we must mention
that the energy level spectrum described in Fig. 2 corresponds to a case often
encountered in molecular systems. In addition the following spin Hamiltonian
(Eq. (54)) may be conventionally employed (J> 0 corresponds to an antiferromag-
netic arrangement – ET,0>ES,0 – whereas J< 0 corresponds to a ferromagnetic
one – ET,0<ES,0).

H ¼ E01þ Js1 � s2; J ¼ �ðES;0 � ET;0Þ ð54Þ

However, in any case, the order of magnitude as well as the sign of J will be the
major answers to the questions concerning the exchange problem. Thus, we may
suspect that slight modifications in the crystal structure (for instance due to the
Jahn-Teller effect [29]) or in the molecular one (crystallized or solvated state) will
have strong effects on the exchange coupling and, correlatively, on the magnetic
behaviour.

Finally, for evoking the complexity of exchange coupling, we must examine the
property of additivity which must be followed by the exchange Hamiltonian. Let us
consider, for instance, the problem of four interacting electrons and let us specifi-
cally examine the exchange coupling between electrons 1 and 2. The effect of
electrons 3 and 4 is treated through the effective (mean) potentials �V(r1) and
�V(r2) ‘‘seen’’ by electrons 1 and 2 (Hartree-Fock approximation). Under these
conditions the general Hamiltonian for electrons 1 and 2 may be written as Eq. (55)
where Ti and Vi are given by Eq. (2) and r12¼ jr1 � r2j.

Hðr1; r2Þ þ �Hðr1; r2Þ ¼
X2

i¼1

ðTi þ ViÞ þ
e2

4�"0r12

þ �Vðr1Þ þ �Vðr2Þ ð55Þ

The energies of the even and odd low-lying solutions allow one to define the
effective exchange constant J12 between spins s1 and s2. Through �H(r1, r2) J12

depends on the mean distribution (orbital functions) of electrons 3 and 4, which
depends itself on the relative orientation of spins s3 and s4 (Eq. (56)).

J12 ¼ J12ðs3 � s4Þ ð56Þ
Hence the exchange Hamiltonian may be written as Eq. (57).

Hexðs1; s2Þ ¼ �J12ðs3 � s4Þs1 � s2 ð57Þ

Of course this argument holds for the six distinct electron pairs and, clearly, the
situation is quite intricate. Thus, in the present restricted approach, the general
Hamiltonian will be as shown by Eq. (58).

Hexðs1; s2; s3; s4Þ ¼
X
i

X
j 6¼i

Hexðsi; sjÞ ð58Þ
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In addition, as soon as spin-orbit couplings appear, the simplified form taken by the
spin–spin exchange Hamiltonian will become more and more complicated [30].

In the general case, several contributions to the Hamiltonian may co-exist and
compete. As a consequence, it will be necessary to introduce higher-order cou-
plings involving mechanisms for which more than two spins will interact. Due to
their specific character, this aspect will not be evoked in the present article in spite
of the fact that the importance of these couplings has been pointed out since the
beginning of the sixties. A special review has been achieved by Herring [18].

In this respect, let us recall that, from an experimental point of view, it was
difficult to find a clear evidence of the existence of higher-order couplings, except
for the bi-quadratic term [31]. General four-spin exchange has been investigated
intensively since the problem of solid 3He [32]. Indeed, from NMR experiments,
Osheroff et al. [33] observed that the low-temperature spin state of solid 3He is a
state in which ferromagnetic planes show up–up–down–down spin sequences
along one of the cubic axes. This new type of structure has been interpreted by
Roger et al. [34] as a strong evidence of planar four-spin interactions, large in
magnitude. At the beginning of the eighties, other examples were investigated in
high field magnetism, by analyzing anomalous magnetization measurements on
compounds such as NiS2 [35] or C6Eu [36]. These results were also interpreted
as further examples of four-spin exchange interactions in addition to the usual two-
spin exchange. A complete review of the four-spin exchange and its application has
been achieved by Yosida [37].

The Problem of Spin-Orbit Coupling

1. Physical Origin

In the absence of interactions all the magnetism of electrons may be described by
the Dirac equation (1928) which rules out the quantum relativistic motion of an
electron in static fields E ¼ �rrrU and B¼ curlA (where U and A are the scalar and
vectorial potentials, respectively) [38]. As the electrons involved in a solid struc-
ture are characterized by a small velocity with respect to the light celerity c
(v=c 
10�2) we must consider the non-relativistic limit of the Dirac equation.
This specific work has been achieved in Appendix. In a first step, it allows one
to derive the Pauli equation (Eq. (59)) (1927) where p ¼ �i�h= represents the
impulsion operator, q¼�e< 0, the charge of electron, r, the set of 2�2 Pauli’s
matrices and 1, the 2�2 identity matrix. Thus, ’ appears as a 2-component eigen-
function. If we introduce the spin operator s ¼ �hr=2, each ’-component takes into
account the eigenvalue of the operator sz along the z-axis of quantization, i.e., �1=2
(in �h unit). Then, the Pauli equation differs from the non-relativistic Schr€oodinger
equation by the presence of an extra term, i.e., the spin magnetic moment (Eq.
(60)) (in �h unit) where �B is the Bohr magneton and q ¼ �e.

1

2m
ðp� qAÞ2 þ qU

� �
1� q�h

2m
r � B

� �
’ ¼ i�h

@’

@t
ð59Þ

�s ¼ 2�Bs; �B ¼ q�h

2m
ð60Þ
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In Appendix we have achieved the 1=c-expansion of the Dirac equation up to
1=c2. We have the following Hamiltonian (Eq. (61)) with H0, VðrÞ, HS, and He

so

being given by Eq. (62).

H ¼ H0 þ VðrÞ1þ HS þ He
so þ o

�
1

c3

�
ð61Þ

H0 ¼ 1

2m
ðp� qAÞ21; VðrÞ ¼ qUðrÞ

HS ¼ �gS�B s � B; He
so ¼ � �B

2mc2
r � ðE� ðp� qAÞÞ ð62Þ

gs ¼ 2 is called the Landé factor of electron. Thus, from the 1=c-expansion of the
Dirac equation, we may derive the following conclusions: (i) the electronic spin
has a relativistic origin and the corresponding contribution appears at zeroth order
so that a ‘‘classical’’ interpretation may be given; (ii) the spin-orbit interaction
described by the Hamiltonian He

so has a purely relativistic origin and appears as
a second-order perturbation.

For a potential VðrÞ characterized by a spherical symmetry, the electric field is

E ¼ � r
qr

dVðrÞ
dr

. As a consequence, in the simplest case of a vanishing magnetic field

BðA ¼ 0Þ, the spin-orbit Hamiltonian may be rewritten under the form of Eqs. (63)
or (64).

He
so ¼ �h

4m2c2r

dVðrÞ
dr

r � ðr� pÞ ð63Þ

He
so ¼ �eðrÞ‘‘‘‘‘‘‘‘ � s; �eðrÞ ¼ 1

2m2c2r

dVðrÞ
dr

; ‘‘‘‘‘‘‘‘ ¼ r� p; s ¼ �h

2
r ð64Þ

2. The Atomic Spin-Orbit Coupling

For an atom composed of N electrons, the spin-orbit Hamiltonian is simply given
by Eq. (65).

Hso ¼
XN
i¼1

�eðriÞ‘‘‘‘‘‘‘‘i � si; �eðriÞ ¼
1

2m2c2ri

dVðriÞ
dri

; VðriÞ ¼ � Ze2

4�"0ri
ð65Þ

If we define the total orbital momentum L ¼
PN

i¼1 ‘‘‘‘‘‘‘‘i and the total spin momentum
S ¼

PN
i¼1 si, L and S are no more constants of motion, separately, due to the fact

that the spin momentum of each electron is coupled to its orbital momentum.
However the total momentum J ¼ Lþ S becomes the new constant of motion as
well as its projection MJ ¼ ML þMS along the z-axis of quantization. In addition,
owing to Wigner-Eckart theorem which states that, inside each multiplicity J, all
the vectorial operators have identical matrix elements via a multiplicative constant,
Eq. (65) may be replaced by Eq. (66).

Hso ¼ �L � S ð66Þ
This result has an important consequence. Indeed, if we consider the coupling
relation J ¼ Lþ S, the orbital momentum L acts in a space EL (with dimEL ¼
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2Lþ 1) and the spin momentum S in a space ES (with dimES ¼ 2Sþ 1).
Consequently, the total momentum J acts in the tensorial product space EJ ¼ EL �
ES (with dimEJ ¼ ð2Lþ 1Þ � ð2Sþ 1Þ). A basis of this new space is given by Eq.
(67).

jLMLSMSi ¼ jLMLi � jSMSi ð67Þ
Another basis may be built up by means of linear combinations of the previous
states so that the eigenstates of J and Jz are involved. These states are labelled
jJMJi and are given by Eq. (68).

jJMJi ¼
XþL

ML¼�L

XþS

MS¼�S

jLMLSMSihLMLSMSjJMJi ð68Þ

These eigenstates are orthogonal and real by construction so that we may also write
Eq. (69) where the coefficient (Eq. (70)) is a Clebsch-Gordan coefficient [39].
Thus, the spin-orbit coupling splits ð2J þ 1Þ times each initial multiplet character-
ized by the set fLMLSMSg. As just seen, the spaces EL (which is linked to the
crystallographic lattice) and ES (spin space) are coupled so that the relation of the
type FðriÞwðsiÞ given by Eq. (5) is no longer valid ðFðriÞ and wðsiÞ being eigen-
functions of the crystallographic and spin spaces, respectively).

jLMLSMSi ¼
XLþS

J¼jL�Sj

XþJ

MJ¼�J

jJMJihJMJ jLMLSMSi ð69Þ

hJMJjLMLSMSi ¼ hLMLSMSjJMJi ¼ CJMJ

LMLSMS
ð70Þ

3. Hund’s Rules [40]

Magnetic properties of solids depend on the total spin and, in some cases (rare
earths) on the orbital momentum of the ions involved. Thus, Hund’s rules try to
explain such a kind of situation in which the Coulomb repulsion (in the Hartree-
Fock approximation) and Pauli’s exclusion principle must be considered simulta-
neously. For this reason, we shall see in the following article II that these rules,
which seem at first sight as out of the scope of the present article, will be under-
stood owing to a more refined physical interpretation.

In a first step we must calculate the energy difference between successive
multiplets, i.e., first-nearest neighbour multiplets characterized by a different J
value. We have Eq. (71) and we must normally solve the secular equation (Eq.
(72)) for calculating EJ .

L � S ¼ 1

2
ðJ2 � L2 � S2Þ ð71Þ

det½hJMJj�L � SjJMJi � EJhJMJjJMJi	 ¼ 0 ð72Þ

At zeroth-order approximation the matrix associated with the operator �L � S is
diagonal so that the right part of Eq. (71) may be expressed owing to the eigen-
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values of operators J2, L2 and S2, respectively, (Eq. (73)) where 1 is the identity
matrix (with dim1 ¼ ð2Lþ 1Þ � ð2Sþ 1ÞÞ.

L � S ¼ 1

2
½JðJ þ 1Þ � LðLþ 1Þ � SðSþ 1Þ	1 ð73Þ

As all the multiplet components have identical L and S values but different Js,
we have for first-nearest neighbour levels characterized by J and J � 1 (Eq. (74)).

DEJ;J�1 ¼ � J ð74Þ

This is the well-known Landé’s interval rule (1923). � may be either positive or
negative. If � > 0 the low-lying level component of the multiplet is characterized
by the lowest J value, i.e., J ¼ jL� Sj (normal multiplet). But, if � < 0, the low-
lying level is the one for which J ¼ Lþ S (reversed multiplet). The sign of � may
be easily determined for normal atomic states (i.e., non-excited ones) if the elec-
tronic configuration is such that the external shell is incomplete. If a shell char-
acterized by the quantum number ‘ is at most half-filled, the number of electrons is
such as z � 2‘þ 1. Due to Pauli’s exclusion principle, these electrons cannot be
characterized by a similar set of quantum numbers. As a consequence all the
spins must be parallel and the total spin is S ¼ Smax ¼ z=2 (MS ¼ z=2). Substituting
si ¼ S=z in Eq. (65) we have Eq. (75) where �e is given by Eq. (65).

Hso ¼ �e

z
L � S ¼ �e

2S
L � S; � ¼ �e

2S
> 0 ð75Þ

In addition L ¼ ML ¼ ‘þ ð‘� 1Þ þ � � � þ ‘� ðz� 1Þ ¼ zð2‘� zþ 1Þ=2. But,
if the shell is more than half-filled, one may proceed as follows. For a complete
shell all the spins are paired so that the total spin is S ¼ 0, thus formally imposing
Hso ¼ 0. As a consequence we must consider the holes of the unfilled shell and Hso

may be written as Hso ¼ �
PN

i¼1 �
eðriÞ‘‘‘‘‘‘‘‘i � si. In addition the total spin and orbital

momenta are S ¼ �
PN

i¼1 si and L ¼ �
PN

i¼1 ‘‘‘‘‘‘‘‘i, respectively. Then, using the same
process previously described, we easily obtain � ¼ �h=2S ¼ ��e=2S < 0. Hund’s
rules may be derived:

(i) For the ground state configuration, the S value is equal to the maximum
possible value Smax compatible with the exclusion principle (Eq. (76)).

S ¼ Smax ð76Þ
(ii) For the ground state configuration, the L value is equal to the maximum

possible value Lmax compatible with condition (i) and the exclusion principle
(Eq. (77)).

L ¼ Lmax ðfor S ¼ SmaxÞ ð77Þ
(iii) The eigenvalue of the total orbital momentum J ¼ Lþ S is J ¼ jL� Sj if the

shell is at most half-filled (L and S are antiparallel) and J ¼ Lþ S if the shell
is more than half-filled (L and S are parallel).

These rules were derived by Hund in 1925 when calculating the mag-
netic moments of ions of rare earths (in good agreement with the corresponding

Magnetic Orbitals and Mechanisms of Exchange I 1003



experimental data, except in two cases explained later by Van Vleck). This result
has constituted an important success for the young Quantum Mechanics.

4. Domain of Validity for the Spin-Orbit Coupling

We have seen in Appendix that the spin-orbit coupling arises from the 1=c-expan-
sion of Dirac equation (at second order). In addition, in the construction scheme of
atomic (or ionic) energy levels, it has been admitted that the electronic orbital
momenta as well as the corresponding spins may add separately in order to form
the total orbital momentum L and the total spin S. This assumption is only possible
with weak relativistic effects inside each atom (or ion). In other words, the energy
level differences appearing in the fine structure must remain small with respect to
the level differences characterized by different couples ðL; SÞ. This is the Russel-
Saunders approximation (1925), also called LS coupling.

In fact, the application domain of this approximation is restricted. The spectrum
levels of light atoms are constructed on the basis of the LS scheme. But, as the atomic
number Z increases, relativistic interactions increase and the Russel-Saunders
approximation is no longer valid. In addition it is worth noticing that this approxi-
mation is not also valid for excited electronic states characterized by a great n value.
If the electrostatic interaction of such an electron with the other electrons is weak,
the relativistic interactions inside this inner atomic part do not decrease. Oppositely,
when the relativistic interaction is important with respect to the electrostatic one
(notably, for the part involving a LS dependency of energy), one cannot speak of
orbital momentum and spin, separately, because these quantities are not conserved.
Thus, when spin-orbit coupling is strong, as it is in heavy atoms, one uses jj cou-
pling. In this scheme, the orbital and spin angular momenta of individual electrons
couple to give a total angular momentum j, and these combined angular momenta
couple to give a total angular momentum J. Under these conditions, ‘‘‘‘‘‘‘‘ and s precess
rapidly around j, and the various js precess slowly around their resultant J. In this
scheme, L and S are not specified and lose their significance. For more details on the
various coupling schemes and their experimental domain of existence, one may
consult the book written by Condon and Shortley [41].

5. The Dzialoshinski-Moriya Coupling [42]

Before detailing the origin of this coupling let us examine the case of a single
transition ion and, more particularly, the origin of the anisotropy energy. In this
respect, let us recall that, for transition ions, the mean value of orbital momentum
in the ground state labelled j0i is null due to the time reversal symmetry. In
addition, as the spin-orbit contribution remains small, the perturbation theory
may be employed. At this step, one could think that, for an isolated ion, magnetism
is due to the presence of spin, in the ground state. In fact, some excited states show
an orbital momentum and contribute, at second order in the perturbation theory, to
this magnetism. For fixing ideas let us compare these different contributions in the
simplest case of an isolated transition ion. In this purpose one may use an effective
Hamiltonian acting on the spin states of the subspace j0i. At second order we
have for the corresponding eigenvalue Eeff (Eq. (78)) where Hso is defined by
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Eq. (64), gL and gS are Landé factors, respectively, associated with the orbital and
spin momenta and are given by the well-known formula (Eq. (79))

Eeff ¼ h0jðHZ þ HsoÞj0i; HZ ¼ �ðgLLþ gSSÞ�BB ð78Þ

gJ ¼ 1 þ JðJ þ 1Þ � LðLþ 1Þ þ SðSþ 1Þ
2JðJ þ 1Þ

gL ¼ 1 ðS ¼ 0; J ¼ LÞ; gS ¼ 2 ðL ¼ 0; J ¼ SÞ ð79Þ
Noting that the spin Hamiltonian HS ¼ �gS�BS � B does not act at second order in
perturbation theory, Eq. (78) may be expanded as Eq. (80) so that the effective
Hamiltonian may be written as Eq. (81) with Lij being given by Eq. (82).

Eeff ¼ �h0jgS�BS � Bj0i �
X
n

jhnjðgL�BL � Bþ �L � SÞj0ij2

En � E0

ð80Þ

Heff ¼ �gS�BS � B� gL�B�
X
i; j

LijSiBj � �2
X
i; j

LijSiSj � ðgL�BÞ2
X
i; j

LijBiBj

ð81Þ

Lij ¼
X
n

h0jLijnihnjLjj0i
En � E0

ð82Þ

Tensor L has generally three eigenaxes and three associated eigenvalues. As a
consequence the Landé factor is also a tensor: gij ¼ gS�ij � gL�Lij. In addition
the last term in Eq. (81) allows one to explain the paramagnetic Van Vleck con-
tribution to the susceptibility and also represents the fine structure (or ionic
anisotropy).

After having identified the origin of the single ion anisotropy energy, the case
of paired ions may be examined. It differs from the single ion case by the intro-
duction of an exchange term between ions A and B carrying the spins S1 and S2,
respectively. A treatment similar to the single ion may be achieved in perturbation
theory by starting from the Hamiltonian (Eq. (83)) where J is the exchange energy
(the definition of which will be specified below), Hso,i and HZ,i (with i¼ 1 or 2) are
given by Eqs. (66) and (78). Under these conditions it is very easy to show that the
second-order perturbation energy which is bilinear in the spin-orbit coupling and
the exchange interaction is written as follows (Eq. (84)) where n, n0 represent the
ground orbital states and m, m0 the excited orbital states of the two ions 1 and 2 at
the points A and B in a crystal, characterized by the positions R1 and R2.

H ¼ �JS1 � S2 þ HZ;1 þ Hso;1 þ HZ;2 þ Hso;2 ð83Þ

X
m

�
hnj�L1 � S1jmi2Jðmn0nn0ÞS1 � S2

En � Em

þ 2Jðnn0mn0ÞS1 � S2hmj�L1 � S1jni
En � Em

�

þ
X
m0

�
hn0j�L2 � S2jm0i2Jðm0nn0nÞS1 � S2

En0 � Em0
þ 2Jðn0nm0nÞS1 � S2hm0j�L2 � S2jn0i

En0 � Em0

�

ð84Þ
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J(nn0mm0) is the exchange integral (Eq. (85)) with r12 ¼ jr1 � r2j, ’nðr� RÞ
being the ground orbital wave function of the ion at R, etc. . .

Jðnn0mm0Þ ¼
ð
dr1dr2’

�
n ðr1� R1Þ’�n0 ðr2� R2Þ

e2

4�"0r12

’mðr2� R1Þ’m0 ðr1� R2Þ

ð85Þ
When the ground state is non-degenerate, the matrix elements of the orbital

angular momentum L in Eq. (84) are purely imaginary and Eq. (84) may be
rewritten as Eq. (86) which gives Eq. (87).

2�
X
m

Jðnn0mn0Þ
En� Em

hnjL1jmi½S1; ðS1 � S2Þ	

þ 2�
X
m0

Jðnn0nm0Þ
En0 � Em0

hn0jL2jm0i½S2; ðS1 � S2Þ	 ð86Þ

2i�

�X
m

Jðnn0mn0Þ
En� Em

hnjL1jmi �
X
m0

Jðnn0nm0Þ
En0 � Em0

hn0jL2jm0i
�
� ðS1� S2Þ ð87Þ

As a consequence we can define the Dzialoshinski-Moriya Hamiltonian (Eq. (88)).

HDM ¼ D � ðS1� S2Þ ð88Þ
D is called the Dzialoshinski-Moriya vector.

The following rules to determine the direction of D are easily obtained from
symmetry considerations for two ions located at points A and B [43]:

(i) When a centre of inversion is located at the midpoint of segment AB, D ¼ 0.
(ii) When a mirror plane perpendicular to AB bisects AB, D jjmirror plane.

Fig. 3. Top view of (a) a canted spin chain structure (alternating D), (b) a helical spin chain structure

(regular D), at 0 K (XY plane favoured) [44]
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(iii) When there is a mirror plane including A and B, D?mirror plane.
(iv) When a two-fold rotation axis perpendicular to AB passes through the mid-

point of AB, D? two-fold axis.
(v) When there is an n-fold axis (n� 2) along AB, D jjAB.

Finally, concerning the spin arrangements involved in the presence of a
Dzialoshinski-Moriya coupling in a crystal, we shall deal with a spin canting
arrangement if D shows a regular alternating direction along a crystal row and a
helical one if D has a regular direction, from site to site (see Fig. 3).

A Need of Predictive Character for the Exchange Hamiltonian

We have seen that a general Hamiltonian may be written between two magnetic
centres A and B as Eq. (89), the ellipses representing the possible contribution of
higher-order couplings.

H ¼ �JSA � SB þ SAðLÞSBþ D � ðSA� SBÞ þ � � � ð89Þ

We have established that this Hamiltonian is a purely phenomenological one. J
appears as the difference between the first low-lying energy levels; (L) is the
anisotropy tensor and D the Dzialoshinski-Moriya vector. These two latter contri-
butions come from the presence of spin-orbit coupling whereas higher-order cou-
plings (omitted here for clarity) have a completely different origin. This class of
phenomenological Hamiltonian, valid for the low-lying energy levels, is character-
ized by a set of specific eigenvalues. However, it has no predictive character with
respect to the microscopic mechanisms involved. In the following article II we shall
examine the problem of superexchange and, after recalling the phenomenological
model proposed by Anderson, we shall introduce a description of this phenomenon
by the bias of a microscopic Hamiltonian. The concept of magnetic orbital will be
used. A comparison will be made between this Hamiltonian and a phenomenolog-
ical one: a correspondence will be then achieved for expressing J vs. key molecular
integrals, thus notably allowing to discuss its true sign.

Appendix

Let us consider the relativistic Dirac equation (Eq. (A1)) [38] with p ¼ �i�h= and
further conditions given by Eq. (A2) where 1 is the 2� 2 identity matrix, 	u is a
2� 2 Pauli matrix, and q ¼ �e < 0 represents the charge of electron.

fc� � ðp� qAÞ þ 
mc2þ qU10g ¼ i�h
@ 

@t
ðA1Þ

10 ¼ 1 0

0 1

� �
; 
 ¼ 1 0

0 �1

� �
; �u¼ 0 	u

	u 0

� �
; u ¼ x; y; or z

ðA2Þ

As 
 and �u are 4�4 matrices it means that  is a wave function characterized
by four components; their physical meaning will be given later. As the relativistic
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energy contains the rest energy mc2, the following transformation (Eq. (A3)) allows
one to rewrite the Dirac equation as Eq. (A4).

 ¼  0 exp

�
� i

mc2

�h
t

�
ðA3Þ

fca � ðp� qAÞ þ 
mc2þ qU10g 0 ¼
�
i�h
@

@t
þ mc2

�
 0 ðA4Þ

If we decompose the 4-component wave function  0 under the form  0 ¼ ’0

�0

	 

where ’0 and �0 are 2-components wave functions, we have the system of coupled
equations (Eqs. (A5a) and (A5b)).

cr � ðp� qAÞ�0 ¼
�
i�h
@

@t
� qU

�
’0 ðA5aÞ

cr � ðp� qAÞ’0 ¼
�
i�h
@

@t
� qUþ 2mc2

�
�0 ðA5bÞ

As we consider the non-relativistic limit, it means that, if " is the ‘‘classical’’
eigenvalue corresponding to the operator i�h@=@t, we have "
 mc2 as well as
jqjU
mc2. We then derive Eq. (A6) and by reporting in Eq. (A5a) Eq. (A7).

�0 ¼ 1

2mc
r � ðp� qAÞ’0 ðA6Þ

1

2m
ðr � ðp� qAÞÞ2’0 ¼

�
i�h
@

@t
� qU

�
’0 ðA7Þ

Using the property of Pauli matrices we may write Eq. (A8) where a and b are
arbitrary vectors.

ðr � aÞ � ðr � bÞ ¼ a � b1þ ir � ða� bÞ ðA8Þ
Here we have a ¼ b ¼ p� qA, with p ¼ �i�h=; but ½p;A	 6¼ 0 implies

a� b 6¼ 0 so that Eq. (A9) is valid.

ðr � ðp� qAÞÞ2 ¼ ðp� qAÞ21� q�hr � ðA� =þ =� AÞ
¼ ðp� qAÞ21� q�hr � curlA ðA9Þ

Finally we may write Eq. (A10)

ðr � ðp� qAÞÞ2 ¼ ðp� qAÞ21� q�h r � B; B ¼ curlA ðA10Þ
so that by reporting in Eq. (A7) we obtain Eq. (A11).

H’0 ¼
��

1

2m
ðp� qAÞ2 þ qU

�
1� q�h

2m
r � B

�
’0 ¼ i�h

@’0

@t
ðA11Þ

This equation is called ‘‘Pauli equation’’ (1927) and the quantity �B ¼ q�h=2m is
the Bohr magneton. Equation (A11) differs from the non-relativistic Schr€oodinger
equation by the presence of the last term in the Hamiltonian which has the form of
a potential energy of a magnetic dipole in an external field. In addition the physical

1008 J. Curély



interpretation of the 2-component eigenfunction ’0 clearly appears: each compo-
nent corresponds to the eigenvalue of the operator sz, i.e., �1=2. For this reason ’0

is called a spinor. The particular study of the Dirac equation without external fields
has allowed to give a deepest interpretation of functions ’0 and �0: they correspond
to electrons with positive energy (moving forwards in time) or negative one (mov-
ing backwards in time). The case of negative energy has finally led to the concept
of positron (or antielectron).

If we reconsider Eq. (A6) we see that �0 
 ’0=c. As a consequence the density
function � ¼   � ¼ ’0’0� þ �0�0� may be assimilated to � � ’0’0� in a first step,
as in the non-relativistic Schr€oodinger equation. But, for assuming a 1=c expansion
at second order of Pauli equation given by Eq. (A11), the contribution �0�0� must
be considered. For simplifying the discussion only the external electric field E
exists, A ¼ 0 and �0 
 i�hr � =’0=2mc. We now have for the density function Eq.
(A12).

� ¼ j’0j2 þ j�0j2 ¼ j’0j2 þ �h2

4m2c2
jr=’0j2 ðA12Þ

Of course this expression differs from Schr€oodinger’s one. So we must search for a
function ’Sch such as given by Eq. (A13).ð

d� ’Sch’Sch
� ¼

ð
d�

�
’0’0� þ �h2

4m2c2
ð=’0� � rÞðr � =’0Þ

�
ðA13Þ

Integrating by parts leads to Eq. (A14).ð
d�ð=’0� � rÞðr � =’0Þ ¼ �

ð
d� ’0�ðr � =Þðr � =Þ’0

¼ �
ð
d� ’0��’0 ¼ �

ð
d� ’0�’0� ðA14Þ

Thus we derive Eq. (A15)ð
d� ’Sch’Sch

� ¼
ð
d� ’0’0� � �h2

8m2c2
ð’0��’0 þ ’0�’0�Þ

� �
ðA15Þ

so that ’Sch and ’0 are given by Eq. (A16).

’Sch ¼
�

1 þ p2

8m2c2

�
’0; ’0 ¼

�
1 � p2

8m2c2

�
’Sch ðA16Þ

For simplifying and, as we are in the classical limit, we consider that a stationary
state is reached, i.e., the operator – i�h@=@t must be replaced by the energy " (the
rest energy being omitted). Under these conditions, the function �0 given by Eq.
(A5b) may be rewritten as Eq. (A17).

�0 ¼ 1

2mc

�
1 � "� qU

2mc2

�
ðrpÞ’0 ðA17Þ
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Then, reporting in Eq. (A5a) with the substitution given by Eq. (A16) and omitting
the terms of order greater than 1=c2 leads to the Schr€oodinger equation H’Sch ¼
"’Sch with H being given by Eq. (A18).

H ¼
�
p2

2m
þ qU� p4

8m3c2

�
1þ q

4m2c2
ðrpÞUðrpÞ � 1

2
ðp2Uþ Up2Þ1

� �
ðA18Þ

Noting that if E ¼ �rU (Eq. (A19)) the Hamiltonian may be written as Eq. (A20).

ðrpÞUðrpÞ ¼ Up2 þ ðrpUÞðrpÞ ¼ Up2 þ i�hðrEÞðrpÞ
p2U� Up2 ¼ ��h2�Uþ 2i�hE � p ðA19Þ

H ¼
�
p2

2m
� p4

8m3c2
þ qU

�
1� q�h

4m2c2
r � ðE� pÞ � q�h2

8m2c2
divE1 ðA20Þ

The first two terms correspond to the expansion of the kinetic energyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpcÞ2 þ ðmc2Þ2

q
� mc2 whereas the quantity qU is the potential energy. The third

term represents the spin-orbit interaction. The last term including the factor divE is
called the Darwin contribution (1928) and only differs from zero at the points
carrying the charges which create the external electric field E. Thus, when
A ¼ 0, the Hamiltonian reduces to Eq. (A21) with conditions being given by
Eq. (A22).

H ¼ ðH0 þ VðrÞÞ1þ He
so þ o

�
1

c3

�
ðA21Þ

H0 ¼ p2

2m
; VðrÞ ¼ qUðrÞ; Hso ¼ � �B

2mc2
r � ðE� pÞ ðA22Þ

When A 6¼ 0, a similar reasoning leads to Eq. (A23) with now conditions being
given by Eq. (A24).

H ¼ ðH0
0 þ VðrÞÞ1þ HS þ He

so þ o

�
1

c3

�
ðA23Þ

H0
0 ¼ 1

2m
ðp� qAÞ2; HS ¼ �gS�Bs � B; He

so ¼ � �B
2mc2

r � ðE� ðp� qAÞÞ

ðA24Þ
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[44] Curély J, Georges R (1994) Phys Rev B49: 12839; Curély J (1995) Physica B205: 31
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